Adding some more judges, here and there.
[and.git] / lib / Mi manual de algoritmos / version_actual / src / geometria / is_inside_concave_polygon.cpp
blobc11b5fcc14dc672265cf474d561902a0d21f6825
1 //Point
2 //Choose one of these two:
3 struct P {
4 double x, y; P(){}; P(double q, double w) : x(q), y(w){}
5 };
6 struct P {
7 int x, y; P(){}; P(int q, int w) : x(q), y(w){}
8 };
10 // Polar angle
11 // Returns an angle in the range [0, 2*Pi) of a given Cartesian point.
12 // If the point is (0,0), -1.0 is returned.
13 // REQUIRES:
14 // include math.h
15 // define EPS 0.000000001, or your choice
16 // P has members x and y.
17 double polarAngle( P p )
19 if(fabs(p.x) <= EPS && fabs(p.y) <= EPS) return -1.0;
20 if(fabs(p.x) <= EPS) return (p.y > EPS ? 1.0 : 3.0) * acos(0);
21 double theta = atan(1.0 * p.y / p.x);
22 if(p.x > EPS) return(p.y >= -EPS ? theta : (4*acos(0) + theta));
23 return(2 * acos( 0 ) + theta);
26 //Point inside polygon
27 // Returns true iff p is inside poly.
28 // PRE: The vertices of poly are ordered (either clockwise or
29 // counter-clockwise.
30 // POST: Modify code inside to handle the special case of "on
31 // an edge".
32 // REQUIRES:
33 // polarAngle()
34 // include math.h
35 // include vector
36 // define EPS 0.000000001, or your choice
37 bool pointInPoly( P p, vector< P > &poly )
39 int n = poly.size();
40 double ang = 0.0;
41 for(int i = n - 1, j = 0; j < n; i = j++){
42 P v( poly[i].x - p.x, poly[i].y - p.y );
43 P w( poly[j].x - p.x, poly[j].y - p.y );
44 double va = polarAngle(v);
45 double wa = polarAngle(w);
46 double xx = wa - va;
47 if(va < -0.5 || wa < -0.5 || fabs(fabs(xx)-2*acos(0)) < EPS){
48 // POINT IS ON THE EDGE
49 assert( false );
50 ang += 2 * acos( 0 );
51 continue;
53 if( xx < -2 * acos( 0 ) ) ang += xx + 4 * acos( 0 );
54 else if( xx > 2 * acos( 0 ) ) ang += xx - 4 * acos( 0 );
55 else ang += xx;
57 return( ang * ang > 1.0 );